首页> 美国卫生研究院文献>Nanoscale Research Letters >Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask
【2h】

Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask

机译:通过摩擦诱导的Si3N4掩模选择性刻蚀在单晶硅上进行纳米加工

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new fabrication method is proposed to produce nanostructures on monocrystalline silicon based on the friction-induced selective etching of its Si3N4 mask. With low-pressure chemical vapor deposition (LPCVD) Si3N4 film as etching mask on Si(100) surface, the fabrication can be realized by nanoscratching on the Si3N4 mask and post-etching in hydrofluoric acid (HF) and potassium hydroxide (KOH) solution in sequence. Scanning Auger nanoprobe analysis indicated that the HF solution could selectively etch the scratched Si3N4 mask and then provide the gap for post-etching of silicon substrate in KOH solution. Experimental results suggested that the fabrication depth increased with the increase of the scratching load or KOH etching period. Because of the excellent masking ability of the Si3N4 film, the maximum fabrication depth of nanostructure on silicon can reach several microns. Compared to the traditional friction-induced selective etching technique, the present method can fabricate structures with lesser damage and deeper depths. Since the proposed method has been demonstrated to be a less destructive and flexible way to fabricate a large-area texture structure, it will provide new opportunities for Si-based nanofabrication.
机译:提出了一种新的制造方法,该方法基于摩擦诱导的Si3N4掩模的选择性蚀刻在单晶硅上产生纳米结构。使用低压化学气相沉积(LPCVD)Si3N4膜作为Si(100)表面上的蚀刻掩模,可以通过在Si3N4掩模上进行纳米划痕并在氢氟酸(HF)和氢氧化钾(KOH)溶液中进行后蚀刻来实现制造。按顺序。扫描俄歇纳米探针分析表明,HF溶液可以选择性地刻蚀刮擦的Si3N4掩模,然后为KOH溶液中的硅衬底后刻蚀提供间隙。实验结果表明,随着划痕载荷或KOH刻蚀时间的增加,制造深度增加。由于Si3N4膜具有出色的掩膜能力,因此在硅上形成纳米结构的最大深度可以达到几微米。与传统的摩擦诱导的选择性蚀刻技术相比,本方法可以制造损伤较小,深度较深的结构。由于已证明所提出的方法是制造大面积纹理结构的破坏性较小且灵活的方法,因此它将为基于硅的纳米制造提供新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号