首页> 外文期刊>Arabian Journal for Science and Engineering >Optimal PI and PID Temperature Controls for a Dehydration Process
【24h】

Optimal PI and PID Temperature Controls for a Dehydration Process

机译:脱水过程的最佳PI和PID温度控制

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, the drying air temperature for an experimental platform of sliced tomatoes dehydration is optimally regulated by using the very well-known integral control approach which could be equivalent to the PI control when the output system is the whole state. In a first stage, the chosen controller is a PI because the plant step response does not present oscillations with low damping. However, obtained experimental results, applying this controller, present some oscillations in the closed-loop transient response. So, in a second stage, a discrete PID controller is applied and its gains are computed by using a numerical optimization algorithm based on the hill climbing method, which considers a quadratic performance index; the proposed procedure assumes an input delayed discrete model of the plant; therefore, the stability is verified by the closed-loop poles location. The reason to apply an optimal control strategy is motivated by the energy saving and the preserving of a desired closed-loop performance of the process. In order to contrast the advantages to use an optimal controller, the obtained experimental results are compared with a PID controller tuned with the improved Ziegler-Nichols rules, which is optimized only considering a criterion depending on the error (the energy consumption it is not involved). Moreover, the performance given by optimal PI control is also compared with an optimal state feedback control. The synthesized controllers (computed gains) are programmed in an industrial programmable logic controller Siemens S7-1200, and they are applied to a sliced tomato dehydration plant. According to the obtained results, when the optimally tuned PID controller is applied, it produces energy saving rates, more uniform drying conditions for the product and a better closed-loop plant performance (shorter settling time and nonovershoot, which are desired features in this type of process), with respect to other tested controllers. The presented experimental results by using the PI and PID optimized controllers allow to verify the feasibility of our proposal.
机译:在这项工作中,切片番茄脱水实验平台的干燥空气温度通过使用众所周知的积分控制方法进行了最佳调节,该积分控制方法等效于输出系统处于整个状态时的PI控制。在第一阶段,选择的控制器是PI,因为工厂阶跃响应不会在低阻尼下产生振荡。但是,使用该控制器获得的实验结果在闭环瞬态响应中出现了一些振荡。因此,在第二阶段,应用离散PID控制器,并使用基于爬坡法的数值优化算法计算增益,该算法考虑了二次性能指标;所提出的过程假定了工厂的输入延迟离散模型;因此,通过闭环极点位置可以验证稳定性。之所以采用最佳控制策略,是因为节省了能量,并保持了过程的理想闭环性能。为了对比使用最佳控制器的优势,将获得的实验结果与通过改进的Ziegler-Nichols规则调整的PID控制器进行比较,该规则仅考虑根据误差的标准进行优化(不涉及能耗) )。此外,还将最佳PI控制给出的性能与最佳状态反馈控制进行比较。在工业可编程逻辑控制器Siemens S7-1200中对合成的控制器(计算的增益)进行编程,并将它们应用于切片番茄脱水设备。根据获得的结果,当应用最佳调节的PID控制器时,它将产生节能率,产品干燥条件更均匀以及闭环设备性能更好(沉降时间和过冲时间较短),这是此类类型的理想功能。 (相对于其他经过测试的控制器)。通过使用PI和PID优化控制器给出的实验结果可以验证我们的建议的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号