首页> 外文期刊>Solar Energy >Device simulations: Toward the design of > 13% efficient PbS colloidal quantum dot solar cell
【24h】

Device simulations: Toward the design of > 13% efficient PbS colloidal quantum dot solar cell

机译:设备模拟:朝向> 13%效率PBS胶体量子点太阳能电池设计

获取原文
获取原文并翻译 | 示例
           

摘要

The performance of colloidal quantum dots (CQD) solar cell lags behind due to the carrier recombination within the quasi-neutral region (QNR). To overcome such issues, researchers exploited graded band alignment technique by piling CQDs of different size. In addition, the electron and hole transport layers, i.e., ETL and HTL highly impact the performance of CQD devices. Therefore, in this work, performance assessment of MgZnO (MZO) and TiO2 ETL based PbS CQD solid layer treated with tetrabutylammoniym iodide (PbS-TBAI) absorber layer based solar cell device is carried out to achieve 13% power conversion efficiency (PCE). In the initial steps, calibration has been done to achieve the state of the art PCE of 9.4%, followed by device optimization. The optimisation is carried out in term of doping density of HTL and ETL, and a device is finalised with doping density of 5 x 10(17) cm(-3) for both, ETL and HTL. MZO and TiO2 ETL based devices with said doping reflected 13.59% and 13.94% conversion efficiencies. The influence of PbS-TBAI/ETL interface defect density (IDD) has also been studied where IDD is varied from 1 x 10(13) cm(-2) to 1 x 10(18) cm(-2) while keeping the rest of the device parameters intact. The results show a noteworthy reduction in the PV performance of the device at higher IDD. External quantum efficiency (EQE) is also obtained to understand the carrier collection. The result shows that carrier collection reduces particularly at lower wavelengths, i.e., 600 nm while increasing the IDD from 1 x10(13) cm(-2) to 1 x 10(18) cm(-2). Whereas, the insignificant reduction is observed at higher wavelengths, i.e. 600 nm. To understand the carrier dynamics for the correlation of the data, energy band diagram (EBD) is obtained for all the performed variation. All the study reported is performed using SCAPS-1D simulator.
机译:胶体量子点(CQD)太阳能电池的性能由于准中性区域(QNR)内的载体重组而后落后。为了克服此类问题,研究人员通过堆积不同尺寸的CQD来利用分级带对准技术。另外,电子和空穴传输层,即ETL和HTL高度影响CQD器件的性能。因此,在该作品中,进行了用四丁基胺(PBS-TBAI)吸收层的太阳能电池装置处理的MgZnO(MZO)和基于TiO 2的PBS CQD固体层的性能评估,以实现> 13%的功率转换效率(PCE) 。在初始步骤中,已经完成校准以实现9.4%的最新状态,然后是设备优化。优化在HTL和ETL的掺杂密度期间进行,并且掺杂密度为5×10(17)厘米(-3)的掺杂密度,η和HTL。基于MZO和TiO2 ETL的具有所述掺杂的装置反映了13.59%和13.94%的转化效率。还研究了PBS-TBAI / ETL界面缺陷密度(IDD)的影响,其中IDD在保持其余的同时从1×10(13 )cm(-2)到1×10(18)cm(-2)变化设备参数完好无损。结果表明,在更高的IDD下设备的光伏性能有值得注意的降低。还获得外部量子效率(EQE)以了解载体收集。结果表明,载体收集特别地降低了较低波长的,即<600nm,同时将IDD从1 x10(13)cm(-2)增加到1×10(18)cm(-2)。虽然,在较高波长下观察到微不足道的减少,即600nm。要了解数据的相关性的载波动态,可以获得所有执行的变化的能带图(EBD)。报告的所有研究都是使用SCAPS-1D模拟器进行的。

著录项

  • 来源
    《Solar Energy》 |2020年第9期|893-902|共10页
  • 作者单位

    Chitkara Univ Inst Engn & Technol VLSI Ctr Excellence Chitkara Punjab India;

    Chitkara Univ Chitkara Coll Appl Engn Chitkara Punjab India;

    Chitkara Univ Chitkara Coll Appl Engn Chitkara Punjab India;

    Chitkara Univ Chitkara Coll Appl Engn Chitkara Punjab India;

    Chitkara Univ Chitkara Coll Appl Engn Chitkara Punjab India;

    Chitkara Univ Inst Engn & Technol VLSI Ctr Excellence Chitkara Punjab India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PbS; Colloidal quantum dot; Solar cell; Electron transport layer; SCAPS; Simulation;

    机译:PBS;胶体量子点;太阳能电池;电子传输层;剪辑;模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号