...
首页> 外文期刊>Microsystem technologies >Friction and dynamically dissipated energy dependence on temperature in polycrystalline silicon MEMS devices
【24h】

Friction and dynamically dissipated energy dependence on temperature in polycrystalline silicon MEMS devices

机译:多晶硅MEMS器件温度摩擦和动态耗散能量依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we report on the influence of capillary condensation on the sliding friction of sidewall surfaces in polycrystalline silicon micro-electromechanical systems (MEMS). We developed a polycrystalline silicon MEMS tribometer, which is a microscale test device with two components subject to sliding contact. One of the components can be heated in situ by Joule heating to set the temperature of the contact and thereby control the capillary kinetics at the MEMS sidewalls. We used an optical displacement measurement technique to record the stick-slip motion of the slider with sub-nanometer resolution, and we assessed the friction force with nanonewton resolution. All friction measurements were performed under controlled ambient conditions while sweeping the contact temperature from room temperature to 300 A degrees C, and from 300 A degrees C to room temperature. We were able to distinguish the two ways in which energy is dissipated during sliding: the 'semi-statically' dissipated energy attributed to asperity deformation and contact yield, and the dynamically dissipated energy ascribed to the release of the tension in the slider during slip events. We observed an increase in the dynamically dissipated energy at 80 A degrees C while sweeping down in temperature. This increase is caused by higher adhesion due to capillary condensation between the conformal surfaces. Our study highlights how energy is dissipated during the sliding contact of MEMS sidewalls, and it is helpful in overcoming friction in multi-asperity systems.
机译:本文报告了毛细血管凝结对多晶硅微机电系统(MEMS)中侧壁表面滑动摩擦的影响。我们开发了一种多晶硅MEMS摩擦计,其是微观测试装置,其具有滑动接触的两个部件。可以通过焦耳加热原位加热其中一个组分,以设定接触的温度,从而在MEMS侧壁上控制毛细管动力学。我们使用了光学位移测量技术来记录滑块具有子纳米分辨率的滑块的粘滑运动,并且我们评估了纳尼瓦顿分辨率的摩擦力。在受控环境条件下进行所有摩擦测量,同时将接触温度从室温至300℃,300℃至室温。我们能够区分在滑动期间能量消散的两种方式:归因于粗糙度变形和接触产量的“半静态”消散能量,以及在滑动事件期间滑动在滑块中张力的动态散发能量。我们观察到80℃的动态散发能量的增加,同时在温度下扫描。由于保形表面之间的毛细管缩合,这种增加是由于毛细血管缩合的较高粘附引起的。我们的研究突出了MEMS侧壁的滑动接触期间能量在MEMS侧壁的滑动接触期间耗散的能量如何克服多粗糙系统中的摩擦。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号