...
首页> 外文期刊>Metabolic engineering >Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae.
【24h】

Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae.

机译:醛脱氢酶的失活:肺炎克雷伯氏菌工程化生产1,3-丙二醇的关键因素。

获取原文
获取原文并翻译 | 示例
           

摘要

Production of 1,3-propanediol (1,3-PD) from glycerol by Klebsiella pneumoniae is restrained by ethanol formation. The first step in the formation of ethanol from acetyl-CoA is catalyzed by aldehyde dehydrogenase (ALDH), an enzyme that competes with 1,3-PD oxidoreductase for the cofactor NADH. This study aimed to improve the production of 1,3-PD by engineering the ethanol formation pathway. An inactivation mutation of the aldA gene encoding ALDH in K. pneumoniae YMU2 was generated by insertion of a tetracycline resistance marker. Inactivation of ALDH resulted in a nearly abolished ethanol formation but a significantly improved 1,3-PD production. Metabolic flux analysis revealed that a pronounced redistribution of intracellular metabolic flux occurred. The final titer, the productivity of 1,3-PD and the yield of 1,3-PD relative to glycerol of the mutant strain reached 927.6 mmol L(-1), 14.05 mmol L(-1)h(-1) and 0.699 mol mol(-1), respectively, which were much higher than those of the parent strain. In addition, the specific 1,3-PD-producing capability (1,3-PD produced per gram of cells) of the mutant strain was 2-fold that of the parent strain due to a lower growth yield of the mutant. By increasing NADH availability, this study demonstrates an important metabolic engineering approach to improve the efficiency of oxidoreduction-coupled bioprocesses.
机译:肺炎克雷伯菌(Klebsiella pneumoniae)由甘油生产1,3-丙二醇(1,3-PD)受乙醇形成的限制。由乙酰辅酶A形成乙醇的第一步是由醛脱氢酶(ALDH)催化,该酶与1,3-PD氧化还原酶竞争辅酶NADH。这项研究旨在通过设计乙醇形成途径来提高1,3-PD的产量。肺炎克雷伯菌YMU2中编码ALDH的aldA基因的失活突变是通过插入四环素抗性标记而产生的。 ALDH的失活导致几乎消除了乙醇的形成,但大大提高了1,3-PD的产量。代谢通量分析显示细胞内代谢通量发生了明显的重新分布。相对于甘油,突变体菌株的最终效价,1,3-PD的生产率和1,3-PD的产量分别达到927.6 mmol L(-1),14.05 mmol L(-1)h(-1)和0.699 mol mol(-1)分别比亲本菌株高得多。另外,由于突变体的较低生长产量,突变体菌株的特异性1,3-PD产生能力(每克细胞产生1,3-PD)是亲本菌株的2倍。通过增加NADH的可用性,本研究证明了一种重要的代谢工程方法,可以提高氧化还原偶联生物过程的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号