您现在的位置: 首页> 研究主题> 冻土地基

冻土地基

冻土地基的相关文献在1989年到2022年内共计118篇,主要集中在建筑科学、公路运输、电工技术 等领域,其中期刊论文63篇、会议论文13篇、专利文献24572篇;相关期刊48种,包括经济技术协作信息、城市建设、中小企业管理与科技等; 相关会议12种,包括第三届防灾减灾工程学术会议、首届全国既有结构加固改造设计与施工技术交流会、中国科学技术协会2005年学术年会11分会场暨中国电机工程学会2005年学术年会等;冻土地基的相关文献由252位作者贡献,包括米维军、熊治文、韩龙武等。

冻土地基—发文量

期刊论文>

论文:63 占比:0.26%

会议论文>

论文:13 占比:0.05%

专利文献>

论文:24572 占比:99.69%

总计:24648篇

冻土地基—发文趋势图

冻土地基

-研究学者

  • 米维军
  • 熊治文
  • 韩龙武
  • 屈耀辉
  • 武小鹏
  • 李奋
  • 许健
  • 赵永虎
  • 赵相卿
  • 刘丰
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 张学礼; 崔强; 张树林
    • 摘要: 为了分析冻土地基中输电线路基础发生冻拔破坏的科学问题,以锥管板条装配式基础为研究对象,采用室内模型试验测试及分析的研究方法,开展了不同环境温度下,冻土地基的冻结试验和基础的上拔加载试验,分析了地基温度场、位移场的分布特征以及基础抗拔承载力与温度之间的关系,揭示出上拔荷载作用下冻土地基的破坏模式。研究结果表明:冻结试验中,模型基础的冻拔位移均小于周围地基土体的冻胀位移,基础对地基土体的冻胀存在反约束作用,距离基础越近,约束作用越明显;不同冻结环境温度下基础的上拔加载试验中,抗拔极限承载力均随环境温度的降低近似呈线性增大,增加速率接近1.8 kN/°C;在冻结与上拔力双重作用下,地基土体首先出现局部张拉破坏,随着上拔荷载的不断增加,地基土体逐渐由局部张拉破坏过渡为整体剪切破坏。研究成果可为这种形式的基础在冻土地基中的应用提供理论依据和实践经验。
    • 王卫东; 崔强; 韩杨春; 张树林; 丁士君
    • 摘要: 针对冻土地区输电线路工程杆塔基础的冻拔破坏问题,提出了一种锥台型装配式基础.通过大型冻土模型试验,考察该基础在不同冻结环境条件下的冻拔特性和抗压承载性能.试验结果表明:① 基础的冻拔位移低于周围地表冻胀位移,地基冻胀量随着与基础距离的增大而增大,该种基础具有良好的抗冻拔性能,且对地基冻胀变形具有限制作用;②在冻土地基条件下,基础的下压荷载-位移曲线呈现"缓变型",随着冻结环境温度的降低,曲线位置逐渐向右侧移动,基础的抗压承载性能逐渐增强;③ 基础的极限抗压承载力随着冻结环境温度呈线性增长规律,变化速率约为10.5 kN/°C,基础的破坏是由温度应力与外加荷载共同作用所引起的,外荷载的作用导致地表前期产生的冻胀裂缝进一步拓宽、延伸,最终导致地基基础体系发生破坏.
    • 林森
    • 摘要: 青藏铁路现行的稳定冻土地基的措施多为间接的、地上的、被动的和局部的举措。本文在综合利用新能源、新材料和新结构的基础上,提出了新型青藏铁路冻土地基加固装置的设计方案,并从理论上分析了该设计方案实施的可行性。
    • 李欢; 徐龙星; 丁勇; 程营; 梅之永
    • 摘要: 基于冻土呈现的特殊力学性能特点,分析了冻土地基道路工程保障的需求,提出了冻土地基道路工程保障发展建议,可为冻土地基道路机动工程保障装备建设提供决策依据,有利于提高我军在冻土地区的道路机动保障能力.
    • 王兴; 熊治文; 刘德仁; 韩龙武; 程佳
    • 摘要: 在高纬度冻土区修建基础工程,如何处理冻土地基使其满足承载力要求,是冻土工程施工技术的关键.为了研究石灰桩对冻土地基的预融和挤密效果,提出以破坏冻土为出发点的石灰桩放热预融方案.采用石灰桩预融冻土地基,通过群桩和单桩模型试验,测试桩周不同位置土的温度、含水率和密度的变化,确定石灰桩对冻土地基的预融和挤密影响半径.试验结果表明,所选用的桩体材料配合比,能够使桩间一定范围内冻土全部融化,提高桩间土的密度.%How to deal with the frozen soil and meet the requirements of bearing capacity is the key to the construction in frozen soil in permafrost regions of high latitude, where infrastructure project is to be implemented. In this paper,in order to study the pre-melt compaction effect in the permafrost region,a proposal is forwarded that lime pile is employed to release heat and fulfill pre-melt as the starting point of the destruction of the shallow frozen soil. The lime pile is used as the foundation treatment in permafrost area,the changes of temperature,moisture content and density of the foundation soil in different position and depth are measured through indoor model test to determine the radius of the influence of the lime pile on the pre-thawing and compaction for permafrost foundation. The research results show that the lime pile can thaw the permafrost and raise the density of the soil between piles.
    • 米维军; 赵永虎; 杨晓明; 屈耀辉; 武小鹏
    • 摘要: At the permafrost test field on Fenghuoshan of Qinghai-Tibetan Plateau,comparative experiments were conducted to study the effects of solar refrigeration device and heat pipe refrigeration device on maintaining the thermal stability of permafrost foundation.Results show that under the same experimental conditions,solar refrigeration device has stronger working and refrigeration performances.With the rich sunlight in permafrost region as heat source power,the solar refrigeration device can work full time in all seasons.Especially in warm season,it can effectively prevent permafrost foundation from the thermal erosion of ambient temperature.The reduction in the annual mean ground temperature of solar refrigeration device is 0.57~0.96 °C greater than that of heat pipe refrigeration device,its cooling influence radius is 0.13 ~0.87 m larger,and its actual refrigerating capacity is 1.97 times as much as that of heat pipe refrigeration device.%在青藏高原风火山多年冻土试验场,对太阳能制冷装置与热管制冷装置用于维护多年冻土地基热稳定的效果进行现场对比试验.结果表明:在同等试验条件下,太阳能制冷装置显现出了较强的工作性能和制冷效果;太阳能制冷装置能够以多年冻土区丰富的太阳光照为热源动力,使制冷装置不分季节全时段工作,特别是在暖季,能够有效阻止环境温度对多年冻土地基的热侵蚀;太阳能制冷装置的年均地温降低幅度比热管制冷装置的大0.57~0.96°C,制冷影响半径比热管制冷装置的大0.13~0.87 m,实际制冷量为热管制冷装置制冷量的1.97倍.
    • 王同民; 任文辉
    • 摘要: 银川滨河黄河大桥东水中引桥为双幅(5×80) m曲线连续钢-混组合梁桥,由开口钢槽梁和预制桥面板结合而成.桥位处施工场地受限,冬季长、冻土深.为实现冬季连续施工,该桥利用单侧场地,充分发挥钢-混组合梁的结构特点,采用无跨间支撑的整联横移技术进行双幅箱梁施工.在施工中,对地基进行冻结处理,在冻土上设预制扩大基础和钢管柱,形成快速拼装支架;利用双幅承台设横移支架和墩顶横向滑移装置,在顺桥向跨间无支撑状态下,将右幅钢梁整联横向滑移就位;采取了钢梁线形预设抛高、浇筑负弯矩区底板混凝土、设剪力钉及分步安装桥面板等综合措施,在无跨间支撑状态下将钢梁与预制混凝土桥面板结合,最终形成的钢-混组合梁结构满足设计目标线形与内力要求.%The east approach bridge of Yinchuan Binhe Huanghe River Bridge over water is comprised of the twin curved steel and concrete continuous composite girder bridges with span arrangement (5×80) m and is composited by the steel channel girders and precast concrete deck slabs.At the location of the bridge, the construction site is restricted, the winter lasts long and the frozen soil is deep.To realize the uninterrupted construction of the bridge in the winter, the construction site on the one side of the bridge was used, the structural characteristics of the steel and concrete composite girders were fully brought into play and the twin box girders were then constructed, using the technique of the transverse sliding of each full continuous unit with no supports arranged amidst the spans along the bridge.In the specific construction, the ground frozen soil was firstly handled, the precast spread foundations were set in the soil and on the foundations, the steel pipe columns were installed to rapidly form the supports for the assembling scaffoldings.The scaffoldings for the transverse sliding and the transverse sliding devices at the pier tops were arranged, using the twin pile caps.The full continuous unit of the right part of the steel channel girder was transversely slid in place under the condition of no supports.The comprehensive measures, such as the presetting of the initial height for the alignments of the steel channel girders, casting of the concrete for the bottom slabs in the hogging moment areas, setting of the shear studs and installing of the deck slabs in step, were taken.The steel channel girders and the concrete deck slabs were made composite under the condition of no supports and the final installed steel and concrete composite girders could satisfy the requirements of the designed target alignments and internal forces.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号